Рабочая программа «Химия, 8-9 классы» Пояснительная записка

Рабочая программа «Химия, 8-9 классы» разработана на основе требований к результатам освоения Основной образовательной программы основного общего образования МБОУ «СОШ №2» с учетом примерной программы по химии (ПООП ООО, от 08.04.2015г. №1/15) и реализует федеральный государственный образовательный стандарт основного общего образования.

Реализация данной программы осуществляется использованием УМК:

8 класс Габриелян О.С. Химия, М.: Дрофа, 2015 год

9 класс Габриелян О.С. Химия, М.: Дрофа, 2015 год

Учебный предмет «Химия» предметной области «Естественно-научные предметы» входит в обязательную часть учебного плана ООП ООО МБОУ «СОШ №2».

На уровне школы изучается с 8 по 9 класс. Общее количество времени составляет 136 часов. Общая недельная нагрузка в 8 - 9 классах - 2 ч. в неделю, 34 учебных недели.

1. Планируемые результаты изучения учебного предмета Химия <u>8 класс</u>

Личностными результатами изучения предмета «Химия» в 8 классе являются следующие умения:

- осознавать единство и целостность окружающего мира, возможности его познаваемости и объяснимости на основе достижений науки;
- постепенно выстраивать собственное целостное мировоззрение: осознавать потребность и готовность к самообразованию, в том числе и в рамках самостоятельной деятельности вне школы;

оценивать жизненные ситуации с точки зрения безопасного образа жизни и сохранения здоровья;

- оценивать экологический риск взаимоотношений человека и природы;
- формировать экологическое мышление: умение оценивать свою деятельность и поступки других людей с точки зрения сохранения окружающей среды гаранта жизни и благополучия людей на Земле.

Метапредметными результатами изучения курса является следующие умения:

- самостоятельно обнаруживать и формулировать учебную проблему, определять цель учебной деятельности;
- выдвигать версии решения проблемы, осознавать конечный результат, выбирать из предложенных и искать самостоятельно средства достижения цели;
- составлять (индивидуально или в группе) план решения проблемы;
- работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно;
- в диалоге с учителем совершенствовать самостоятельно выработанные критерии оценки;
- анализировать, сравнивать, классифицировать и обобщать факты и явления. Выявлять причины и следствия простых явлений;

- осуществлять сравнение, классификацию, самостоятельно выбирая основания и критерии для указанных логических операций;
- преобразовывать информацию из одного вида в другой (таблицу в текст и пр.);
- уметь определять возможные источники необходимых сведений, производить поиск информации, анализировать и оценивать её достоверность;
- самостоятельно организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т.д.).

Предметными результатами изучения предмета являются следующие умения:

- описывать свойства твердых, жидких и газообразных веществ, выделяя их существенные признаки;
- характеризовать вещества по составу и свойствам;
- раскрывать смысл основных химических понятий: атом, молекула, химический элемент, валентность, используя знаковую систему химии;
- вычислять относительную молекулярную и молярную массы веществ, а также массовую долю химического элемента в соединениях;
- описывать и характеризовать табличную форму ПСХЭ;
- характеризовать состав атомных ядер и распределение числа электронов по электронным слоям атомов химических элементов малых периодов периодической системы;
- определять виды химической связи в простых и сложных веществах: ионную, ковалентную полярную, ковалентную неполярную и металлическую;
- характеризовать сущность химических явлений по наличию определенных признаков и объяснять их отличие от явлений физических;
- определять тип химической реакции;
- характеризовать вещества по составу и свойствам;
- составлять уравнения электролитической диссоциации кислот, щелочей, солей;
- составлять полные и сокращенные ионные уравнения реакций обмена;
- составлять уравнения окислительно-восстановительных реакций;
- подтверждать существование генетической связи между веществами различных классов;
- устанавливать принадлежность веществ к определенному классу соединений;
- характеризовать химические свойства веществ различных классов;
- приводить примеры реакций подтверждающих химические свойства: оксидов, кислот, оснований, солей;
- следовать правилам пользования химической посудой лабораторным оборудованием, а также правилами обращения с веществами в соответствии с инструкциями по выполнению химических опытов;
- выявлять при выполнении химического опыта признаки, свидетельствующие о протекании химической реакции;
- приготовлять растворы с определенной массовой долей растворенного вещества;
- проводить опыты по распознаванию водных растворов кислот и щелочей с помощью индикатора.

9 класс

Личностными результатами изучения предмета «Химия» в 9 классе являются следующие умения:

- выстраивать собственное целостное мировоззрение;
- учиться использовать свои взгляды на мир для объяснения различных ситуаций, решения возникающих проблем и извлечения жизненных уроков;
- осознавать свои интересы, находить и изучать в учебниках по разным предметам материал (из максимума), имеющий отношение к своим интересам;
- использовать свои интересы для выбора индивидуальной образовательной траектории, потенциальной будущей профессии и соответствующего профильного образования;
- учиться самостоятельно выбирать стиль поведения, привычки, обеспечивающие безопасный образ жизни и сохранение здоровья своего, а также близких людей и окружающих;
- выбирать поступки, нацеленные на сохранение и бережное отношение к природе, особенно живой, избегая противоположных поступков, постепенно учась и осваивая стратегию рационального природопользования;
- учиться убеждать других людей в необходимости овладения стратегией рационального природопользования;
- использовать экологическое мышление для выбора стратегии собственного поведения в качестве одной из ценностных установок.

Метапредметными результатами обучения, являются умения

- самостоятельно обнаруживать и формулировать проблему в классной и индивидуальной учебной деятельности;
- выдвигать версии решения проблемы, осознавать конечный результат, выбирать из предложенных и искать самостоятельно средства достижения цели;
- составлять (индивидуально или в группе) план решения проблемы (выполнения проекта). Подбирать к каждой проблеме (задаче) адекватную ей теоретическую модель;
- работая по предложенному и самостоятельно составленному плану, использовать наряду с основными и дополнительные средства обучения (справочная литература, сложные приборы, компьютер);
- планировать свою индивидуальную образовательную траекторию;
- работать по самостоятельно составленному плану, сверяясь с ним и целью деятельности, исправляя ошибки, используя самостоятельно подобранные средства (в том числе и Интернет);
- свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;
- в ходе представления проекта давать оценку его результатам;
- самостоятельно осознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;
- уметь оценить степень успешности своей индивидуальной образовательной деятельности;

• давать оценку своим личностным качествам и чертам характера.

Предметные результаты обучения

Учащийся должен уметь:

- использовать при характеристике металлов и их соединений понятия: «металлы», «ряд активности металлов», «щелочные металлы», «щелочноземельные металлы», использовать их при характеристике металлов;
- давать характеристику химических элементов-металлов (щелочных металлов, магния, кальция, алюминия, железа) по их положению в Периодической системе химических элементов Д. И. Менделеева;
- называть соединения металлов и составлять их формулы по названию;
- характеризовать строение, общие физические и химические свойства простых веществ-металлов; объяснять зависимость свойств (или предсказывать свойства) химических элементов-металлов (радиус, металлические свойства элементов, окислительно-восстановительные свойства элементов) и образуемых ими соединений (кислотно-основные свойства высших оксидов и гидроксидов, окислительно-восстановительные свойства) от положения в Периодической системе химических элементов Д. И. Менделеева; описывать общие химические свойства металлов с помощью естественного (русского или родного) языка и языка химии;
- составлять молекулярные уравнения реакций, характеризующих химические свойства металлов и их соединений, а также электронные уравнения процессов окисления-восстановления; уравнения электролитической диссоциации;
- составлять молекулярные, полные и сокращенные ионные уравнения реакций с участием электролитов;
- устанавливать причинно-следственные связи между строением атома, химической связью, типом кристаллической решетки металлов и их соединений, их общими физическими и химическими свойствами;
- описывать химические свойства щелочных и щелочноземельных металлов, а также алюминия и железа и их соединений с помощью естественного (русского или родного) языка и языка химии;
- выполнять, наблюдать и описывать химический эксперимент по распознаванию важнейших катионов металлов, гидроксид-ионов;
- экспериментально исследовать свойства металлов и их соединений, решать экспериментальные задачи по теме «Металлы»;
- описывать химический эксперимент с помощью естественного (русского или родного) языка и языка химии; проводить расчеты по химическим формулам и уравнениям реакций, протекающих с участием металлов, и их соединений;
- использовать при характеристике металлов и их соединений понятия: «неметаллы», «галогены», «аллотропные видоизменения», «жесткость воды», «временная жесткость воды», «постоянная жесткость воды»;
- давать характеристику химических элементов-неметаллов (водорода, галогенов, кислорода, серы, азота, фосфора, углерода, кремния) по их положению в Периодической системе химических элементов Д. И. Менделеева, простое вещество, формула, название и тип высшего оксида и гидроксида, формула и характер летучего водородного соединения);

- называть соединения неметаллов и составлять их формулы по названию; характеризовать строение, общие физические и химические свойства простых веществ-неметаллов;
- объяснять зависимость свойств (или предсказывать свойства) химических элементовнеметаллов (радиус, неметаллические свойства элементов, окислительновосстановительные свойства элементов) и образуемых ими соединений (кислотноосновные свойства высших оксидов и гидроксидов, летучих водородных соединений, окислительно-восстановительные свойства) от положения в Периодической системе химических элементов Д. И. Менделеева;
- описывать общие химические свойства неметаллов с помощью естественного (русского или родного) языка и языка химии;
- составлять молекулярные уравнения реакций, характеризующих химические свойства неметаллов и их соединений, а также электронные уравнения процессов окисления-восстановления; уравнения электролитической диссоциации;
- молекулярные, полные и сокращенные ионные уравнения реакций с участием электролитов; устанавливать причинно-следственные связи между строением атома, химической связью, типом кристаллической решетки неметаллов и их соединений, их общими физическими и химическими свойствами;
- описывать химические свойства водорода, галогенов, кислорода, серы, азота, фосфора, графита, алмаза, кремния и их соединений с помощью естественного (русского или родного) языка и языка химии;
- описывать способы устранения жесткости воды и выполнять соответствующий им химический эксперимент;
- выполнять, наблюдать и описывать химический эксперимент по распознаванию ионов водорода и аммония, сульфат-, карбонат-, силикат-, фосфат-, хлорид-, бромид-, иодид-ионов; экспериментально исследовать свойства металлов и их соединений, решать экспериментальные задачи по теме «Неметаллы»; описывать химический эксперимент с помощью естественного (русского или родного) языка и языка химии;
- проводить расчеты по химическим формулам и уравнениям реакций, протекающих с участием неметаллов и их соединений;
- знать основы теории строения органических соединений (номенклатуру, свойства, способы получения и применения углеводородов, спиртов, белков, жиров и углеводов);
- составлять названия и химические уравнения реакций всех органических соединений.

2. Содержание учебного предмета Химия

Рабочая программа предусматривает расчетные задачи и практические работы, которые даются после изучения теоретического материала по данной теме. Это изменение позволяет: лучше закрепить теоретический материал на практике; экономить время на исключении дополнительного повторения теории перед практической работой.

Практические работы и расчетные задачи, прописанные курсивом обязательны для изучения, но оцениваются выборочно.

8 КЛАСС

Введение (5 ч)

Химия — наука о веществах, их свойствах и превращениях.

Понятие о химическом элементе и формах его существования: свободных атомах, простых в сложных веществах.

Превращении веществ. Отличие химических реакций от физических явлений. Роль химии в жизни человека. Хемофилия и хемофобия.

Краткие сведения из истории возникновения и развития химии. Период алхимии. Понятие о философском камне. Химия н XVI в. Развитие химии на Руси. Роль отечественных ученых в становлении химической науки — работы М. Н. Ломоносова. А. М. Бутлерова, Д. И. Менделеева.

Химическая символика. Знаки химических элементов и происхождение их названий. Химические формулы. Индексы и коэффициенты. Относительные атомная и молекулярная массы. Расчет массовой доли химического элемента по формуле вещества.

Периодическая система химических элементов Д. И. Менделеева, ее структура: малые и большие периоды, группы и подгруппы (главная и побочная). Периодическая система как справочное пособие для получения сведений о химических элементах.

Практические работы

1. Лабораторное оборудование и приемы обращения с ним. Правила безопасной работы в химической лаборатории.

Тема 1

Атомы химических элементов (10 ч)

Атомы как форма существования химических элементов. Основные сведения о строении атомов. Доказательства сложности строении атомов. Опыты Резерфорда. Планетарная модель строения атома.

Состав атомных ядер: протоны и нейтроны. Относительная атомная масса. Взаимосвязь понятий «протон», «нейтрон», «относительная атомная масса».

Изменение числа протонов в ядре атома - образование новых химических элементов.

Изменение числа нейтронов в ядре атома — образование изотопов. Современное определение понятия «химический элемент». Изотопы как разновидности атомов одного химического элемента.

Электроны. Строение электронных оболочек атомов химических элементов № 1 — 20 периодической системы Д. И. Менделеева. Понятие о завершенном и незавершенном электронном слое (энергетическом уровне).

Периодическая система химических элементов Д. И. Менделеева и строение атомов: физический смысл порядкового номера элемента, номера группы, номера периода.

Изменение числа электронов на внешнем электронном уровне атома химического элемента — образование положительных и отрицательных ионов. Ионы, образованные атомами металлов и неметаллов. Причины изменения металлических и неметаллических свойств в периодах и группах.

Образование бинарных соединений. Понятие об ионной связи. Схемы образования ионной связи.

Взаимодействие атомов химических элементов-неметаллов между собой — образование двухатомных молекул простых веществ. Ковалентная неполярная химическая связь. Электронные и структурные формулы.

Взаимодействие атомов химических элементов-неметаллов между собой — образование бинарных соединений неметаллов. Электроотрицательность. Понятие о ковалентной полярной связи.

Взаимодействие атомов химических элементов-металлов между собой -образование металлических кристаллов. Понятие о металлической связи.

Демонстрации

Модели атомов химических элементов. Периодическая система химических элементов Д. И. Менделеева.

Тема 2

Простые вещества (7 ч)

Положение металлов и неметаллов в периодической системе химических элементов Д. И. Менделеева. Важнейшие простые вещества — металлы: железо, алюминий, кальций, магний, натрий, калий. Общие физические свойства металлов.

Важнейшие простые вещества — неметаллы, образованные атомами кислорода, водорода, азота, серы, фосфора, углерода. Способность атомов химических элементов к образованию нескольких простых веществ — аллотропия. Аллотропные модификации кислорода, фосфора и олова. Металлические и неметаллические свойства простых веществ. Относительность деления простых веществ на металлы и неметаллы.

Постоянная Авогадро. Количество вещества. Моль. Молярная масса. Молярный объем газообразных веществ. Кратные единицы количества вещества миллимоль и киломоль, миллимолярная и кломолярнан массы вещества, миллимолярный и киломолярный объемы газообразных веществ.

Расчеты с использованием понятий «количество вещества», «молярная масса», «молярный объем газов», «постоянная Авогадро».

Расчетные задачи

- 1. Вычисление массовой доли химического элемента по формуле соединения.
- 2. Установление простейшей формулы вещества по массовым долям химических элементов.

Демонстрации

Получение озона. Образцы белого и серого олова, белого и красного фосфора. Некоторые металлы и неметаллы количеством вещества 1 моль. Модель молярного объема газообразных веществ.

Тема 3

Соединения химических элементов (15 ч)

Степень окисления. Определение степени окисления элементов по химической формуле соединения. Составление формул бинарных соединений, общий способ их называния. Бинарные соединения: оксиды, хлориды, сульфиды и др. Составление их формул. Представители оксидов: вода, углекислый газ и негашеная известь. Представители летучих водородных соединений: хлороводород и аммиак.

Основания, их состав и названия. Растворимость оснований в воде. Таблица растворимости гидроксидов и солей в воде. Представители щелочей: гидроксиды натрия, калия и кальция. Понятие о качественных реакциях. Индикаторы. Изменение окраски индикаторов в щелочной среде.

Кислоты, их состав и названия. Классификация кислот. Представители кислот: серная, соляная и азотная. Изменение окраски индикаторов в кислотной среде.

Соли как производные кислот и оснований. Их состав и названия. Растворимость солей в воде. Представители солей: хлорид натрия, карбонат и фосфат кальция.

Аморфные и кристаллические вещества. Межмолекулярные взаимодействия. Типы кристаллических решеток: ионная, атомная, молекулярная и металлическая. Зависимость свойств веществ от типов кристаллических решеток.

Вещества молекулярного и немолекулярного строения. Закон постоянства состава для веществ молекулярного строения.

Чистые вещества и смеси. Примеры жидких, твердых и газообразных смесей. Свойства чистых веществ и смесей. Их состав. Массовая и объемная доли компонента смеси. Расчеты, связанные с использованием понятия «доля».

Расчетные задачи

3. Расчет массовой доли растворенного вещества в растворе.

Практические работы

- 2. Очистка загрязненной поваренной соли.
- 3. Приготовление растворов с определенной массовой долей растворенного вещества

Демонстрации

Образцы оксидов, кислот, оснований и солей. Модели кристаллических решеток хлорида натрия, алмаза, оксида углерода (IV). Взрыв смеси водорода с воздухом. Способы разделения смесей. Дистилляция воды.

Лабораторные опыты

- 1. Знакомство с образцами веществ разных классов.
- 2. Разделение смесей.

Тема 4

Изменения, происходящие с веществами (14 ч)

Понятие явлений как изменений, происходящих с веществами. Явления, связанные с изменением кристаллического строения вещества при постоянном его составе, — физические явления. Физические явления в химии: дистилляция, кристаллизация, выпаривание и возгонка веществ, центрифугирование.

Явления, связанные с изменением состава вещества, — химические реакции. Признаки и условия протекания химических реакций. Понятие об экзо- и эндотермических реакциях. Реакции горения как частный случай экзотермических реакций, протекающих с выделением света.

Закон сохранения массы веществ. Химические уравнения. Значение индексов и коэффициентов. Составление уравнений химических реакций.

Расчеты по химическим уравнениям. Решение задач на нахождение количества вещества, массы или объема продукта реакции по количеству вещества, массе или объему исходного вещества. Расчеты с использованием понятия «доля», когда исходное вещество дано в виде раствора с заданной массовой долей растворенного вещества или содержит определенную долю примесей.

Реакции разложения. Понятие о скорости химических реакций. Катализаторы. Ферменты.

Реакции соединения. Каталитические и некаталитические реакции. Обратимые и необратимые реакции.

Реакции замещения. Электрохимический ряд напряжений металлов, его использование для прогнозирования возможности протекания реакций между металлами и растворами кислот. Реакции вытеснения одних металлов из растворов их солей другими металлами.

Реакции обмена. Реакции нейтрализации. Условия протекания реакций обмена в растворах до конца.

Типы химических реакций (по признаку «число и состав исходных веществ и продуктов реакции») на примере свойств воды. Реакция разложения — электролиз воды.

Реакции соединения — взаимодействие воды с оксидами металлов и неметаллов. Понятие «гидроксиды». Реакции замещения — взаимодействие воды с щелочными и щелочноземельными металлами. Реакции обмена (на примере гидролиза сульфида алюминия и карбида кальция).

Расчетные задачи

- 4. Вычисления по химическим уравнениям количества, объема, массы вещества по количеству, объему, массе реагентов или продуктов реакции.
- 5. Вычисление массы (количества вещества, объема) продукта реакции, если известна масса исходного вещества, содержащего определенную долю примесей.

Демонстрации

Примеры физических явлений: а) плавление парафина; б) возгонка йода или бензойной кислоты; в) растворение перманганата калия; г) диффузия душистых веществ с горящей лампочки накаливания. Примеры химических явлений: а) горение магния, фосфора; б) взаимодействие соляной кислоты с мрамором или мелом; в) получение гидроксида меди (II) г) растворение полученного гидроксида в кислотах; д) взаимодействие оксида меди (II) с серной кислотой при нагревании; е) разложение перманганата калия; ж) взаимодействие разбавленных кислот с металлами; з) разложение пероксида водорода; и) электролиз воды.

Лабораторные опыты

- 3. Сравнение скорости испарения воды н спирта по исчезновению их капель на фильтровальной бумаге.
- 4. Окисление меди в пламени спиртовки или горелки.
- 5. Помутнение известковой воды от выдыхаемого углекислого газа.
- 6. Получение углекислого газа взаимодействием соды и кислоты.
- 7. Замещение меди в растворе хлорида меди (II) железом.

Тема 5

Растворение. Растворы. Свойства растворов электролитов (17 ч)

Растворение как физико-химический процесс. Понятие о гидратах и кристаллогидратах. Растворимость. Кривые растворимости как модель зависимости растворимости твердых веществ от температуры. Насыщенные, ненасыщенные и пересыщенные растворы. Значение растворов для природы и сельского хозяйства.

Понятие об электролитической диссоциации. Электролиты и неэлектролиты. Механизм диссоциации электролитов с различным типом химической связи. Степень электролитической диссоциации. Сильные и слабые электролиты.

Основные положения теории электролитической диссоциации. Ионные уравнения реакций. Условия протекания реакции обмена между электролитами до конца в свете ионных представлений.

Классификация ионов и их свойства.

Кислоты, их классификация. Диссоциация кислот и их свойства в свете теории электролитической диссоциации. Молекулярные и ионные уравнения реакций кислот. Взаимодействие кислот с металлами. Электрохимический ряд напряжений металлов. Взаимодействие кислот с оксидами металлов. Взаимодействие кислот с основаниями — реакция нейтрализации. Взаимодействие кислот с солями. Использование таблицы растворимости для характеристики химических свойств кислот.

Основания, их классификация. Диссоциация оснований и их свойства в свете теории электролитической диссоциации. Взаимодействие оснований с кислотами, кислотными оксидами и солями. Использование таблицы растворимости для характеристики химических свойств оснований.

Разложение нерастворимых оснований при нагревании.

Соли, их классификация и диссоциация различных типов солей. Свойства солей в свете теории электролитической диссоциации. Взаимодействие солей с металлами, условия протекания этих реакций. Взаимодействие солей с кислотами, основаниями и солями. Использование таблицы растворимости для характеристики химических свойств солей.

Обобщение сведений об оксидах, их классификации и химических свойствах.

Генетические ряды металлов и неметаллов. Генетическая связь между классами неорганических веществ.

Окислительно-восстановительные реакции. Окислитель и восстановитель, окисление и восстановление.

Реакции ионного обмена и окислительно-восстановительные реакции. Составление уравнений окислительно-восстановительных реакций методом электронного баланса.

Свойства простых веществ — металлов и неметаллов, кислот и солей в свете представлений об окислительно-восстановительных процессах.

Практические работы

- 4. Решение экспериментальных задач по теме «Основные классы неорганических соединений».
 - 5. Реакции ионного обмена.

Демонстрации

Испытание веществ и их растворов на электропроводность. Зависимость электропроводности уксусной кислоты от концентрации. Взаимодействие цинка с серой,

соляной кислотой, хлоридом меди (II). Горение магния. Взаимодействие хлорной и сероводородной воды.

Лабораторные опыты

- 8. Реакции, характерные для растворов кислот (соляной или серной).
- 9. Реакции, характерные для растворов щелочей (гидроксилов натрия или калия).
- 10. Получение и свойства нерастворимого основания, например, гидроксида меди (II).
- 11. Реакции, характерные для растворов солей (например, для хлорида меди (II).
- 12. Реакции, характерные для основных оксидов (например, для оксида кальция).
- 13. Реакции, характерные для кислотных оксидов (например, для углекислого газа).

9 КЛАСС

Повторение основных вопросов курса 8 класса и введение в курс 9 класса (10 ч)

Характеристика элемента по его положению в периодической системе химических элементов Д. И. Менделеева. Свойства оксидов, кислот, оснований и солей в свете теории электролитической диссоциации и процессов окисления-восстановления. Генетические ряды металла и неметалла.

Понятие о переходных элементах. Амфотерность. Генетический ряд переходного элемента.

Периодический закон и периодическая система химических элементов Д. И. Менделеева в свете учения о строении атома. Их значение.

Лабораторный опыт. 1. Получение гидроксида цинка и исследование его свойств.

Тема 1

<u>Металлы</u> (18 ч)

Положение металлов в периодической системе химических элементов Д. И. Менделеева. Металлическая кристаллическая решетка и металлическая химическая связь. Общие физические свойства металлов. Сплавы, их свойства и значение. Химические свойства металлов как восстановителей. Электрохимический ряд напряжений металлов и его использование для характеристики химических свойств конкретных металлов. Способы получения металлов: пиро-, гидро- и электрометаллургия. Коррозия металлов и способы борьбы с ней.

Общая характеристика щелочных металлов. Металлы в природе. Общие способы их получения. Строение атомов. Щелочные металлы — простые вещества, их физические и химические свойства. Важнейшие соединения щелочных металлов — оксиды, гидроксиды и соли (хлориды, карбонаты, сульфаты, нитраты), их свойства и применение в народном хозяйстве. Калийные удобрения.

Общая характеристика элементов главной подгруппы II группы. Строение атомов. Щелочноземельные металлы — простые вещества, их физические и химические свойства. Важнейшие соединения щелочноземельных металлов — оксиды, гидроксиды и соли (хлориды, карбонаты, нитраты, сульфаты и фосфаты), их свойства и применение в народном хозяйстве.

Алюминий. Строение атома, физические и химические свойства простого вещества. Соединения алюминия — оксид и гидроксид, их амфотерный характер. Важнейшие соли алюминия. Применение алюминия и его соединений.

Железо. Строение атома, физические и химические свойства простого вещества. Генетические ряды Fe^{2+} и Fe^{3+} . Качественные реакции на Fe^{2+} и Fe^{3+} . Важнейшие соли железа. Значение железа, его соединений и сплавов в природе и народном хозяйстве.

Практические работы

- 1. Решение экспериментальных задач по теме «Металлы и их соединения».
- 2. Осуществление цепочки химических превращений металлов.

Демонстрации

Образцы щелочных и щелочноземельных металлов. Образцы сплавов. Взаимодействие натрия, лития и кальция с водой. Взаимодействие натрия и магния с кислородом. Взаимодействие металлов с неметаллами. Получение гидроксидов железа (II) и (III).

Лабораторные опыты

- 2. Ознакомление с образцами металлов.
- 3. Взаимодействие металлов с растворами кислот и солей.
- 4. Ознакомление с образцами природных соединений: а) натрия; б) кальция; в) алюминия; г) железа.
- 5. Получение гидроксида алюминия и его взаимодействие с растворами кислот и щелочей. 6. Качественные реакции на ионы Fe^{2+} и Fe^{3+} .

Тема 2

<u>Неметаллы</u> *(24ч)*

Общая характеристика неметаллов: положение в периодической системе Д. И. Менделеева, особенности строения атомов, электроотрицательность как мера «неметалличности», ряд электроотрицательности. Кристаллическое строение неметаллов — простых веществ. Аллотропия. Физические свойства неметаллов. Относительность понятий «металл», «неметалл».

Кислород. Водород. Кислород – химический элемент и простое вещество. Озон. Состав воздуха. Строение атома и молекулы. Физические и химические свойства кислорода. Получение и применение кислорода Положение в периодической системе химических

элементов Д. И. Менделеева. Строение атома и молекулы. Физические и химические свойства водорода, его получение и применение.

Общая характеристика галогенов. Строение атомов. Простые вещества, их физические и химические свойства. Основные соединения галогенов (галогеноводороды и галогениды), их свойства. Качественная реакция на хлорид-ион. Краткие сведения о хлоре, броме, фторе и поде. Применение галогенов и их соединений в народном хозяйстве.

Сера. Строение атома, аллотропия, свойства и применение ромбической серы. Оксиды серы (IV) и (VI), их получение, свойства и применение. Сероводородная и сернистая кислоты. Серная кислота и ее соли, их применение в народном хозяйстве. Качественная реакция на сульфат-ион.

Азот. Строение атома и молекулы, свойства простого вещества. Аммиак, строение, свойства, получение и применение. Соли аммония, их свойства и применение. Оксиды азота (II) и (IV). Азотная кислота, ее свойства и применение. Нитраты и нитриты, проблема их содержания в сельскохозяйственной продукции. Азотные удобрения. Фосфор. Строение атома, аллотропия, свойства белого и красного фосфора, их применение. Основные соединения: оксид фосфора (V), ортофосфорная кислота и фосфаты. Фосфорные удобрения.

Углерод. Строение атома, аллотропия, свойства аллотропных модификаций, применение. Оксиды углерода (II) и (IV) их свойства и применение. Качественная реакция на углекислый газ. Карбонаты: кальцит, сода, поташ, их значение в природе и жизни человека. Качественная реакция на карбонат-ион.

Кремний. Строение атома, кристаллический кремний, его свойства и применение. Оксид кремния (IV), его природные разновидности. Силикаты. Значение соединений кремния в живой и неживой природе. Понятие о силикатной промышленности.

Практические работы

- 3. Получение кислорода и изучение его свойств.
- 4. Получение водорода и изучение его свойств.
- 5. Решение экспериментальных задач по теме «Неметаллы IV-VII групп и их соединений».
 - 6. Качественныереакции на ионы в растворе.
 - 7. Получение аммиака и изучение его свойств.
 - 8. Получение углекислого газа и изучение его свойств.

Демонстрации

Образцы галогенов — простых веществ. Взаимодействие галогенов с натрием, алюминием. Вытеснение хлором брома или йода из растворов их солей.

Взаимодействие серы с металлами, водородом и кислородом.

Взаимодействие концентрированной азотной кислоты с медью.

Поглощение углем растворенных веществ или газов. Восстановление меди из ее оксида углем. Образцы природных соединений хлора, серы, фосфора, углерода, кремния. Образцы важнейших для народного хозяйства сульфатов, нитратов, карбонатов, фосфатов. Образцы стекла, керамики, цемента.

Лабораторные опыты

- 7. Качественная реакция на хлорид-ион.
- 8. Качественная реакция на сульфат-ион.
- 9. Распознавание солей аммония.
- 10. Получение углекислого газа и его распознавание.
- 11. Качественная реакция на карбонат-ион.
- 12. Ознакомление с природными силикатами.
- 13. Ознакомление с продукцией силикатной промышленности.

Тема 3

Органические соединения (16 ч)

Вещества органические и неорганические, относительность понятия «органические вещества». Причины многообразия органических соединений. Химическое строение органических соединений. Молекулярные и структурные формулы органических веществ.

Метан и этан: строение молекул. Горение метана и этана. Дегидрирование этана. Применение метана.

Химическое строение молекулы этилена. Двойная связь. Взаимодействие этилена с водой. Реакции полимеризации этилена. Полиэтилен и его значение.

Понятие о предельных одноатомных спиртах на примерах метанола и этанола. Трехатомный спирт — глицерин.

Одноосновные предельные карбоновые кислоты на примере уксусной кислоты. Ее свойства и применение. Стеариновая кислота как представитель жирных карбоновых кислот.

Реакции этерификации и понятие о сложных эфирах. Жиры как сложные эфиры глицерина и жирных кислот.

Понятие об аминокислотах. Реакции поликонденсации. Белки, их строение и биологическая роль.

Понятие об углеводах. Глюкоза, ее свойства и значение. Крахмал и целлюлоза (в сравнении), их биологическая роль.

Демонстрации

Модели молекул метана и других углеводородов. Взаимодействие этилена с бромной водой и раствором перманганата калия.

Образцы этанола и глицерина. Качественная реакция на многоатомные спирты. Омыление жира. Взаимодействие глюкозы с аммиачным раствором оксида серебра. Качественная реакция на крахмал. Доказательство наличия функциональных групп в растворах аминокислот. Горение белков (шерсти или птичьих перьев). Цветные реакции белков.

Лабораторные опыты

- 14. Изготовление моделей молекул углеводородов.
- 15. Свойства глицерина.
- 16. Взаимодействие глюкозы с гидроксидом меди (II) без нагревания и при нагревании.
 - 17. Взаимодействие крахмала с йодом.

Примерный перечень тем учебных проектов по химии для учащихся основной школы.

- 1. Вода уникальное вещество природы.
- 2. История спички.
- 3. Металлы в искусстве.
- 4. Химики о секретах красоты.
- 5. Домашняя химчистка.
- 6. Способы очистки питьевой воды.
- 7. Активированный уголь и его использование.
- 8. Химия в стихах и прозе.

Тематическое планирование

No॒	Тема раздела	Классы	
раздела		8	9
I	Первоначальные химические понятия	12	1
II	Кислород. Водород	3	1
III	Вода. Растворы	8	1
IV	Основные классы неорганических соединений	16	2
V	Строение атома. Периодический закон и	4	3
	периодическая система химических элементов Д.И.		
	Менделеева		
VI	Строение веществ. Химическая связь	6	
VII	Химические реакции	14	2
VIII	Неметаллы IV – VII групп и их соединения		24
IX	Металлы и их соединения		18
X	Первоначальные сведения об органических веществах		16
	Итого	68	68