Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа N_2 »

РАССМОТРЕНА: на методическом совете протокол № 1 «29» августа 2017 г

СОГЛАСОВАНА: Заместитель директора по УВР Мечетина Н.А.

«30» августа 2017 г

приказ № 219

ХИМИЯ

11 класс Рабочая программа (базовый уровень)

Программа разработана Окуневой А.П., учитель химии

Пояснительная записка

Данная рабочая программа курса химии для 11 класса разработана на основе примерной программы среднего общего образования в соответствии с федеральным компонентом государственного стандарта 2004г., утвержденного приказом № 1312 Министерства образования РФ от 09.03.2004 г.

Общая характеристика учебного предмета

Основными проблемами химии являются изучение состава и строения веществ, зависимости их свойств от строения, конструирование веществ с заданными свойствами, исследование закономерностей химических превращений и путей управления ими в целях получения веществ, материалов, энергии. Курс общей химии 11 класса направлен на решение задачи интеграции знаний учащихся по неорганической и органической химии с целью формирования у них единой химической картины мира. Ведущая идея курса - единство неорганической и органической химии на основе общности их понятий, законов и теорий, а также на основе общих подходов к классификации органических и неорганических веществ и закономерностям протекания химических реакций между ними. Логика и структурирование курса позволяют в полной мере использовать в обучении логические операции мышления: анализ и синтез, сравнение и аналогию, систематизацию и обобщение.

Цели

Изучение химии в средней (полной) школе на базовом уровне направлено на достижение следующих целей:

- •освоение важнейших знаний об основных понятиях и законах химии, химической символике; •овладение умениями наблюдать химические явления, проводить химический эксперимент, производить расчеты на основе химических формул веществ и уравнений химических реакций; •развитие познавательных интересов и интеллектуальных способностей в процессе проведения химического эксперимента, самостоятельного приобретения знаний в соответствии
- **•воспитание** отношения к химии как к одному из фундаментальных компонентов естествознания и элементу общечеловеческой культуры;

с возникающими жизненными потребностями;

•применение полученных знаний и умений для безопасного использования веществ и материалов в быту, сельском хозяйстве и на производстве, решения практических задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающей среде.

Общеучебные умения, навыки и способы деятельности

Рабочая программа предусматривает формирование у учащихся общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций. В этом направлении приоритетами для учебного предмета «Химия» в старшей школе на базовом уровне являются:

умение самостоятельно и мотивированно организовывать свою познавательную деятельность (от постановки цели до получения и оценки результата); использование элементов причинно-следственного и структурно-функционального анализа; определение сущностных характеристик изучаемого объекта; умение развернуто обосновывать суждения, давать определения, приводить доказательства; оценивание и корректировка свое: с поведения в окружающей среде, выполнение в практической деятельности и в повседневной жизни экологических требований; использование мультимедийных ресурсов и компьютерных

технологий для обработки, передачи, систематизации информации, создания баз данных, презентации результатов познавательной и практической деятельности.

Учебно-методический комплект

- 1. Габриелян, О.С. Химия. 11 класс. Базовый уровень: учеб, для общеобразоват. учреждений [Текст] / О.С. Габриелян. М.: Дрофа, 2011. 220с.
- 2. Габриелян, О.С., Яшукова. А.В. Химия. 11 кл. Базовый уровень: Методическое пособие [Текст] / О.С. Габриелян М.: Дрофа, 2005. 186с.
- 3. Габриелян, О. С., Лысова, Г. Г., Введенская, А.Г. Настольная книга учителя. Химия 11 кл.: [Текст] / О.С. Габриелян, Г.Г. Лысова, А.Г. Введенская М.: Дрофа, 2009. 264с.
- 4. Габриелян, О. С., Остроумов, И.Г. Общая химия в тестах, задачах, упражнениях. 11 кл [Текст] / О.С. Габриелян, И. Г. Остроумов М.: Дрофа, 2006. 168 с.

СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО ПРЕДМЕТА Химия 11 класс

Строение атома и периодический закон Д. И. Менделеева.

Основные сведения о строении атома. Понятие об орбиталях. Электронные конфигурации атомов химических элементов. Периодический закон Д.И.Менделеева в свет е учения о строении атома. Открытие Д.И.Менделеевым периодического закона. Значение периодического закона и периодической системы. Периодическая система химических элементов Д.И.Менделеева графическое отображение периодического закона.

Демонстрации. Различные формы периодической системы химических элементов Д.И. Менделеева.

Лабораторные опыты. Конструирование периодической системы с использованием карточек.

Строение вещества.

Ионная химическая связь. Классификация ионов. Свойства веществ с ионной связью. Ковалентная химическая связь. Полярность связи и молекул. Свойства веществ с ковалентной связью. Металлическая химическая связь. Особенности строения атомов металлов. Свойства веществ с металлической связью. Водородная химическая связь. Значение водородной связи для организации структур биополимеров. Полимеры. Пластмассы: термопласты и реактопласты. Представители и применение. Волокна: природные и химические. Представители и применение. Газообразное состояние вещества. Молярный объем газообразных веществ. Примеры газообразных природных смесей: воздух, природный газ. Загрязнение атмосферы (кислотные дожди, парниковый эффект) и борьба с ними. Жидкое состояние вещества. Минеральные воды. Жидкие кристаллы и их применение. Твердое состояние вещества. Аморфные твердые вещества. Кристаллическое строение вещества. Дисперсные системы. Дисперсная фаза и дисперсная среда. Классификация дисперсных систем. Состав вещества и смесей. Вещества молекулярного и немолекулярного строения. Понятие «доля» и ее разновидности.

Демонстрации. Модели ионных, атомных, молекулярных и металлических кристаллических решеток. Модели молекул изомеров и гомологов. Получение аллотропных модификаций серы и фосфора.

Растворение окрашенных веществ в воде (сульфата меди (II), перманганата калия, хлорида железа (III)). Зависимость скорости реакции от концентрации и температуры. Разложение пероксида водорода в присутствии катализатора (оксида марганца (IV) и фермента (каталазы). Образцы пищевых, косметических, биологических и медицинских золей и гелей. Эффект Тиндаля.

Лабораторные опыты. Определение типа кристаллической решетки вещества и описание его свойств. Ознакомление с коллекцией полимеров. Испытание воды на жесткость Устранение жесткости воды. . Ознакомление с дисперсными системами.

Практическая работа №1. Получение, собирание и распознавание газов.

Химические реакции

Реакции идущие без изменения состава вещества. Аллотропия. Изомеры и изомерия. Реакции идущие с изменением состава вещества. Реакции соединения и замещения. Реакции разложения и обмена. Тепловой эффект химической реакции и термохимические уравнения. Скорость химической реакции. Обратимость химической реакции. Способы смещения химического равновесия на примере синтеза аммиака. Роль воды в химической реакции. Растворимость. Электролитическая диссоциация. Химические свойства воды. Гидролиз неорганических соединений. Гидролиз органических соединений. Окислительновосстановительные реакции. Степень окисления. Окисление и восстановление. Электролиз.

Демонстрации. Коллекция образцов металлов. Взаимодействие натрия и сурьмы с хлором, железа с серой. Горение магния и алюминия в кислороде. Взаимодействие щелочноземельных металлов с водой. Взаимодействие натрия с этанолом, цинка с уксусной кислотой. Алюминотермия. Взаимодействие меди с концентрированной азотной кислотой. Результаты коррозии металлов в зависимости от условий ее протекания. Коллекция образцов неметаллов. Взаимодействие хлорной воды с раствором бромида (иодида) калия. Коллекция природных органических кислот. Разбавление концентрированной серной кислоты. Взаимодействие концентрированной серной кислоты с сахаром, целлюлозой и медью. Образцы природных минералов, содержащих хлорид натрия, карбонат кальция, фосфат кальция и гидроксокарбонат меди (II). Образцы пищевых продуктов, содержащих гидрокарбонаты натрия и аммония, их способность к разложению при нагревании. Гашение соды уксусом. Качественные реакции на катионы и анионы.

Лабораторные опыты. Взаимодействие металлов с кислотами. Химические СВОЙСТВЕ кислот. Химические свойства оснований. Гидролиз хлоридов и ацетатов щелочных металлов. Ознакомление с коллекциями металлов, неметаллов, кислот, оснований и солей.

Практическая работа №2. Решение экспериментальных задач на идентификацию органических и неорганических соединений.

Вешества и их свойства.

Металлы. Взаимодействие металлов с неметаллами (хлором, серой и кислородом). Взаимодействие щелочных и щелочноземельных металлов с водой. Электрохимический рял напряжений металлов. Взаимодействие металлов с растворами кислот и солей. Алюминотермия. Взаимодействие натрия с этанолом и фенолом. Коррозия металлов. Понятие о химической и электрохимической коррозии металлов. Способы защиты металлов от коррозии.

Неметаллы. Сравнительная характеристика галогенов как наиболее типичных представителей неметаллов. Окислительные свойства неметаллов (взаимодействие с металлами и водородом). Восстановительные свойства неметаллов (взаимодействие с более электроотрицательными неметаллами и сложными веществами-окислителями).

Кислоты неорганические и органические. Классификация кислот. Химические свойства кислот: взаимодействие с металлами, оксидами металлов, гидроксидами металлов, солями, спиртами (реакция этерификации). Особые свойства азотной и концентрированной серной кислоты.

Основания неорганические и органические. Основания, их классификация. Химические свойства оснований; взаимодействие с кислотами, кислотным*? оксидами и солями. Разложение нерастворимых оснований.

С о л и . Классификация солей: средние, кислые и основные. Химические свойства солей: взаимодействие с кислотами, щелочами, металлами и солями. Представители солей и их значение. Хлорид натрия, карбонат кальция, фосфат кальция (средние соли); гидрокарбонаты натрия и аммония (кислые соли); гидроксокарбонат меди (II) - малахит (основная соль).

Качественные реакции на хлорид-, сульфат-, и карбонат-анионы, катион аммония, катионы железа (II) и (III).

Генетическая связь между классами неорганических орган ических соединений. Понятие о генетической связи и генетических рядах. Генетический ряд металла. Генетический ряд неметалла. Особенности генетического ряда в органической химии. Демонстрации. Модели молекул н-бутана и изобутана. Зависимость скорости реакции от природы веществ на примере взаимодействия растворов различных кислот одинаковой концентрации с одинаковыми гранулами цинка и взаимодействия одинаковых кусочков разных металлов (магния, цинка, железа) с соляной кислотой. Взаимодействие растворов серной кислоты с растворами тиосульфата натрия различной концентрации и температуры.. Разложение пероксида водорода с помощью катализатора (оксида марганца (IV)) и каталазы сырого мяса и сырого картофеля. Примеры необратимых реакций, идущих с образованием осадка, газа или воды. Взаимодействие лития и натрия с водой. Образцы кристаллогидратов. Испытание растворов электролитов и неэлектролитов на предмет диссоциации. Зависимость степени электролитической диссоциации уксусной кислоты от разбавления раствора. Гидролиз карбида кальция. Гидролиз карбонатов щелочных металлов и нитратов цинка или свинца (II). Получение мыла. Простейшие окислительно-восстановительные реакции; взаимодействие цинка с соляной кислотой и железа с раствором сульфата меди (II).

Лабораторные опыты. Реакции замещения меди железом в растворе медного купороса. Получение водорода взаимодействием кислоты с цинком. Реакции, идущие с образование осадка, газа и воды. Получение кислорода разложением пероксида водорода. Различные случаи гидролиза солей.

Требования к уровню подготовки выпускников:

знать / понимать

• важнейшие химические понятия: вещество, химический элемент, атом, молекула, относительные атомная и молекулярная массы, ион, аллотропия, изотопы, химическая связь, электроотрицательность, валентность, степень окисления, моль, молярная масса, молярный объем, вещества молекулярного и немолекулярного строения, растворы, электролит в неэлектролит,

электролитическая диссоциация, окислитель и восстановитель, окисление и восстановление, тепловой эффект реакции, скорость химической реакции, катализ, химическое равновесие, углеродный скелет, функциональная группа, изомерия, гомология;

- основные законы химии: сохранения массы веществ, постоянства состава,периодический закон;
- основные теории химии: химической связи, электролитической диссоциации, строения органических соединений;
- важнейшие вещества и материалы: основные металлы и сплавы; серная, соляная, азотная и уксусная кислоты; щелочи, аммиак, минеральные удобрения, метан, этилен, ацетилен, бензол, этанол, жиры, мыла, глюкоза, сахароза, крахмал, клетчатка, белки, искусственные и синтетические волокна, каучуки, пластмассы;

уметь

- называть изученные вещества по «тривиальной» или международной номенклатуре;
- определять: валентность и степень окисления химических элементов, тип химической связи в соединениях, заряд иона, характер среды в водных растворах неорганических соединений, окислитель и восстановитель, принадлежность веществ к различным классам органических соединений;
 - характеризовать: элементы малых периодов по их положению в периодической

системе Д.И.Менделеева; общие химические свойства металлов, неметаллов, основных классов неорганических и органических соединений; строение и химические свойства изученных органических соединений;

- объяснять: зависимость свойств веществ от их состава и строения; природу химической связи (ионной, ковалентной, металлической), зависимость скорости химической реакции и положения химического равновесия от различных факторов;
- выполнять химический эксперимент по распознаванию важнейших неорганических и органических веществ;
- проводить самостоятельный поиск химической информации с использованием различных источников (научно-популярных изданий, компьютерных баз данных, ресурсов Интернета); использовать компьютерные технологии для обработки и передачи химической информации и ее представления в различных формах;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- объяснения химических явлений, происходящих в природе, быту и на производстве;
- определения возможности протекания химических превращений в различных условиях и оценки их последствий;?
 - экологически грамотного поведения в окружающей среде;
- оценки влияния химического загрязнения окружающей среды на организм человека и другие живые организмы;
- безопасного обращения с горючими и токсичными веществами, лабораторным оборудованием;
 - приготовления растворов заданной концентрации в быту и на производстве;

• критической оценки достоверности химической информации, поступающей из разных источников.

Данная рабочая программа может быть реализована при использовании традиционной технологии обучения, а также элементов других современных образовательных технологий, передовых форм и методов обучения, таких как проблемный метод, развивающее обучение, компьютерные технологии, тестовый контроль знаний и др. в зависимости от склонностей, потребностей, возможностей и способностей каждого конкретного класса в параллели.

Список литературы.

- 1. Примерная программа среднего общего образования по химии, 2004г.
- 2. Химия. Естествознание. Содержание образования: Сборник нормативно правовых документов и методических материалов. [Текст] / сост. Т.Б. Васильева. И.Н. Иванова. М.: Вентана Граф, 2007. 192 с.
- 3. Программа курса химии для 8-11 классов общеобразовательных учреждений. [Текст] / О.С. Габриелян М.: Дрофа. 2007. 80с.
- 4. Гольдфарб, Я.П. Сборник задач и упражнений по химии [Текст] / Я.П. Гольдфарб. М: Просвещение, 2011. 190с.

Календарно - тематическое планирование уроков химии 11 класс (1час в неделю, 34 ч. в год)

No	Тема	Дата
1	Вводный инструктаж по технике безопасности. Методы познания	
	химии	
2	Строение атома. Электронная оболочка. Особенности строения	
	электронных оболочек атомов переходных элементов, s-орбитали и	
	р-орбитали.	
3	ПЗ и ПСХЭ Д.И. Менделеева.	
4	Типы химической связи: ионная связь.	
5	Типы химической связи: ковалентная полярная и ковалентная	
	неполярная химические связи.	
6	Металлическая и водородная химические связи. Единая природа	
	химических связей.	
7	Вещества молекулярного и немолекулярного строения. Типы	
	кристаллических решеток. Полимеры.	
8	Состав вещества. Многообразие веществ.	
9	Газы. Твердые тела. Жидкости.	
10	Дисперсные системы. Коллоиды (золи и гели).	
11	Чистые вещества и смеси. Состав смесей. Разделение смесей.	
	Истинные растворы. Способы выражения концентрации растворов.	
12	Классификация химических реакций в органической и	
	неорганической химии. Тепловой Эффект химических реакций.	
13	Химические реакции.	

14	Скорость химической реакции.	
15	Обратимые и необратимые химические реакции. Химическое	
	равновесие и способы его смещения.	
16	Электролитическая диссоциация. Реакции ионного обмена.	
17	Гидролиз органических и неорганических соединений. Среда водных	
	растворов. Водородный показатель	
18	ОВР. Электролиз.	
19	Обобщение и систематизация знаний по общей химии.	
20	Контрольная работа №1 по теме 1 «Общая химия»	
21	Металлы и их свойства.	
22	Общие способы получения металлов. Коррозия.	
23	Неметаллы и их свойства. Благородные газы.	
24	Общая характеристика галогенов.	
25	Кислоты.	
26	Основания.	
27	Соли.	
28	Оксиды.	
29	Генетическая связь между классами неорганических соединений.	
30	Практическая работа №1 «Получение, собирание и распознавание	
	газов»	
31	Практическая работа №2 «Решение экспериментальных задач по	
	идентификации органических и неорганических веществ».	
32	Обобщение и систематизация знаний по теме №2 «Неорганическая	
	химих»	
33	Контрольная работа №2 по теме «Неорганическая химия»	
34	Анализ контрольной работы. Итоговый урок.	